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FOREWORD

The research described herein, which was conducted at Cornell Uni-
versity, Department of Thermal Engineering, was performed under NASA
Grant NGR-33-010-042 with Dr. John C. Evvard, NASA Lewis Research
Center, as Technical Monitor.
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SUMMARY

The inviscid flow inside and outside a moving droplet is analyzed,
allowing the shape to be nonspherical subject to surface tension.
Specifically, the Weber number-drag relationship is sought which seems
to assure the least tendency to form a separated wake. Two conditions
of continuous velocity derivatives are imposed at the rear stagnation
point for this purpose.

The results give reasonable changes of shape (flattening) and
reasonable but somewhat too low values of Weber number for minimum wake.

Even rather small departures from spherical shape dramatically
suppress internal circulation.

INTRODUCTION

There is a continuing interest in the fluid mechanics of droplets
of one fluid moving through a different fluid. Perhaps the chief tech-
nological reason for this interest has to do with combustion processes
involving the dispersal of one fluid in another. The present study has
a somewhat general motivation in terms of fluid confinement. There are
many reasons why one might wish a flow to proceed in such a way as to
preserve the separation between two different fluids. There are two
real fluid considerations, at least, which must be considered in such a
study. First, there must be a shape-stabilizing mechanism such as sur-
face tension. Electromagnetic pinch and rotational inertia may also be
effective in this respect. 1In the present study, we accept surface
tension as a prototype of such restraining influences.

The second, more mysterious effect is that of viscosity. We must
assume that no self confined flow can last forever; it must ultimately
be destroyed by viscosity, heat conduction, and diffusion, or a combina-
tion of these. This report concerns the most obvious effect of
viscosity, that is, the tendency of the flow on the rearward part of an
object to separate which, in addition to producing drag of the object as
a whole, presumably would contribute to the decay of the internal motions
of the droplet.

Recent papers by Winnikow and Chao (Ref. 1) and Harper and Moore
(Ref. 2) have dealt with various aspects of droplets at high Reynolds
number. In both these papers, the theory begins with the inviscid flow
comprising a Hill's vortex inside the droplet, and a potential flow out-
side. The droplet is considered spherical, and the theories proceed to
consider the viscous boundary layer connecting these inner and outer
flovws.

The most troublesome aspect of these theories is the treatment of
the vicinity of the rear stagnation point where flow separation. and eddy
formation, both inside and outside the droplet, may or may not occur.



The variety of possibilities is indicated by the experimental results of
Winnikow and Chao. Even in the same Reynolds number range the wake may

be a very narrow thread or a much wider region of disturbance, depending,
in effect, on the size of the droplet. It proves difficult to sort out

the factors influencing wake size. For example, one might expect separa-
tion to depend on Reynolds number (boundary layer thickness) and Weber
number (degree of flattening of the droplet). However, since in the
experiments, drag is always in balance with gravity, a change of droplet
mass changes both Reynolds and Weber numbers, and the effects are difficult
to separate.

In the present note we consider inviscid flow (infinite Reynolds
number ), but allow shape to change because of surface tension, and ask if
there is any Weber number for which the inviscid flow would be expected
to have features associated with a small or vanishing wake.

EQUATIONS OF THE PROBLEM

We assume an axisymmetric flow in which vorticity is fully diffused;
that is, in keeping with Batchelor's theorem (Ref. 3), the vorticity is
proportional to distance from the axis of symmetry within the droplet.
The differential equation for the stream function is
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A sketch of coordinates appears in Fig. 1. Outside the droplet, where the
flow is irrotational, Eq. 1 applies with the right-hand side omitted
(x = 0).

The boundary conditions used with these equations are the following:
There is a uniform stream of velocity U far from the droplet

im aY
lim __ﬂ£2§7-= U p = cosH (3)

roo r(l-p

where the subscript zero denotes flow quantities outside the droplet.
Subscript i will denote flow quantities inside the droplet. Thus, the
specification that the droplet surface is a stream surface for both inner
and outer flows may be written
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where R(8) defines the sufface of the droplet. Finally, across the
droplet surface, pressure must balance surface tension. For a given
shape R(0), pressure difference due to surface tension would be
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o Iz R(R%+R'%)%/25in0 _ (5)

If R is constant this formula reduces to the correct result, namely,
2/R. The pressure difference obtained from the Bernoulli equation, in-
cluding buoyancy force, would be
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Although we assume the flow to be incompressible inside and outside the
droplet, the density is considered constant in both regions.

We may note at this point that the problem is not yet fully deter-
mined for a given droplet volume and velocity. Specifically, one may
say that the vorticity inside the droplet is not yet fixed because of
the possibility of various droplet shapes. If the droplet were spherical,
the Bernoulli constant K would be determined immediately from Egs. 5
and 6. In general, however, there must be a relationship between k, K
and droplet shape that would admit various combinations of those
parameters. '

Presumably the problem is made determinate through the action of
viscosity. Without attempting to analyze the viscous effects associated
with the boundary of the above droplet, let us require that the velocity
Jump across the droplet surface have vanishing gradient at the rear
stagnation point:
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This boundary condition presumably makes the problem unique. In
any droplet motion, the terminal flow situation must be partly the result
of some effect of viscosity involving recirculation of vorticity within
the droplet. FEq. 7, in effect, minimizes the tendency to flow separation
at the rearward part of the droplet. That is, a boundary layer in that
region would not be needed to compensate for a velocity discontinuity,
and we know from the boundary-layer analysis of Chao (Ref. 4) that no
flow separation occurs when there is no velocity jump in the purely
spherical case,

At this point we could proceed to solve the system of equations and
boundary conditions. However, since we are interested in finding condi-
tions for the least effect of viscosity, we add an additional boundary
condition to the effect that there is no surface gradient of shear-stress
discontinuity at the rear stagnation point. In effect, the generation
of vorticity is assumed to vanish at 6 = 0. The following condition, then,
represents what would seem to be the greatest possible suppression of
viscous effects associated with wake formation:
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where R is the radius of curvature of the surface at the rear stagnation
point. cPresuma.bly this additional boundary condition will lead to a re-~
lationship between Weber and Bond numbers, for example, that would identify
conditions for a minimum wake.

SOLUTION OF THE EQUATIONS

Solutions to Eq. 1 may be written in terms of spherical harmonics
as follows:
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where the P are the Legendre polynomials. Inside the droplet terms
singular atMthe origin have been dropped, while outside, terms singular
at infinity have been dropped. For convenience, the following defini-
tions are made:
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Parenthetically, we may note that Hill's spherical vortex is a
particular case of Egq. 9, where
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and the other coefficients vanish. We may obtain a simple approximate
solution by truncating the series of Eqs. 9 and 10, keeping only the first
three terms of the sums. Correspondingly, we apply boundary conditions

at only three points -- the rear stagnation point, the shoulder (6 = w/2),
and the forward stagnation point. We assume an interpolation formula for
raedius of the droplet, guadratic in u, designed to pass through the three
points defining the shape of the droplet. Ro and R, may be regarded as
unknown, while Ry, in effect, is used to define the size of the droplet.
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Before proceeding let us count unknowns and equations. Three A's,
three C's, and two radii account for eight unknowns. k (the level of
vortieity), K (the Bernoulli constant or pressurization of the droplet)
and Weber number (W) add three additional unknowns for a total of 11l.
Turning to the boundary conditions, requiring points 1, 2 and 3 to be on
stream surfaces of both inner and outer flows yields six conditions. The
balance of pressure and surface tension at those three points, together
with the two special conditions at the rear stagnation point, give a
total of 11 equations, which should suffice to determine the 11 unknowns.
We may write down the results of applying the first eight boundary condi-
tions as follows. The "Bond number" B is a parameter of the problem.

R, = — =+ - B i (1ka)



R, Ry .
K = h13+1+2§— -5 (14p)
1 1 :
R.-R
_ 173
8 = 3R, % (1he)
3
2312
ay = - 5 8 (1k4)
2
5 5
SRS W W - (Lbe)
1 3_2_2 R.-R.°1
2R, 7 R, “-R, 173
5 5 2 _ 2 2 2 5 5
) (R, 7+4R,”) (R -R.%) - (R, “+IR, )(31,___}‘,3 7)‘
c, = 5 (1h4f)
3 (Ry+R) (R Ry+UR,")
c. = - = (1+2c.+6c.) (1kg)
3 12 1 7% &
312
K = 2&1(1+h—-2')+ 6a2 (1kn)
R,

We then apply Eq. T and find
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In this set of equations, one may say that only one quantity, say
R3, remains unknown. Only two conditions remain: The pressure-surface
tension balance at the shoulder of the droplet yields



2 2
2R2 +3/h(Rl—R3) -R2(Rl-2R +R3)

L 3
W= { + UB(R.+—=—) -~ R } X
R *Rs VRS TN T P e n 21
| (16)
oy 2R22 R, 2 o, 2 R 3 ge R >
{‘;—[98.2 —-—2- + (28. 68-3 2) ] [TR]_ + (l—cl;-g + —-——-L—-) ]}
o Rl Rl 2 2 232

and finally the condition of Eq. 8 closes the system:
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Based on Eq. 13, the radius Rc may be written as
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RESULTS AND DISCUSSION

The solution of the foregoing system of algebraic equations was
obtained on a high-speed computing machine for the liquid combinations
featured in Ref. 1. Results have been calculated in terms of an equiva-
lent drop radius, that is, the radius of the sphere that would have the
same volume as the drop.

%ﬂRe3 = volume of drop (19)

Bond and Weber numbers are then expressed in terms of this equivalent
radius:

R o R
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and we calculate a drag coefficient based on the equivalént frontal area
of the droplet.

D
C. = ————m— : (21)
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and assume that the drag is that necessary to balance negative buoyancy.
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Thus, the drag coefficient is a ratio of Bond to Weber numbers, and perhaps,
more properly, should be called a Froude number,

c, =L

b= 3 (23)
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It should be obvious that the drag coefficient calculated in this way is
not necessarily that which will actually be produced by the action of
viscosity.

The results of the calculations are compiled in the Table, for four
different combinations of substances. In each case the first and last
rows represent the limits of realistic solutions. The first row may be
thought of as the case of infinite velocity, and the last row represents
infinite radius of curvature at the rear stagnation point. These results
are summarized on Figure 2.

It will be noted that the infinite radius of curvature at the back
of the droplet, signifying a tendency of the whole droplet to become
flattened there, occurs at values of Weber number approaching one which
is, in fact, the approximate experimental limit for a stable droplet.

(In Ref. 1, Weber number is 4 times the definition here.) This is cer-
tainly a reasonable feature of the solution. We notice that over the
range of substances considered in the calculations, the conditions of our
analysis are met only for Weber numbers greater than about .3. Below that
value, separated wakes would presumably be expected.

Shown also on the figure are the experimental drag coefficients
from Fig. 10 of Ref. 1, which, of course, depend on the action of
viscosity. The points where these experimental curves cross the calcu-
lated ones should define the droplets having minimum wakes. Figs. 2 and
4 of Ref. 1 indicate that the photographs showed minimum wake extent when
the drag coefficient was a minimum. In all cases the drag minimum was at
about W' & 0.8. Thus, the present calculations seem to predict a minimum
value in the right range of Weber number, though the agreement is not as
close as one might wish.



It is important to notice that the circulation within the droplet
calculated in this paper is very small compared with the circulation
that would characterize a Hill's vortex. One may perhaps conclude that
any distortion of droplet shape from the spherical has a profound effect
on the circulation within the droplet tending to suppress it. One may,
therefore, question whether it is realistic to use a small perturbation
boundary layer analysis as is done in Refs. 1 and 2 for theoretical study
of viscous effects in these problems. A boundary layer study being
carried out by Mr. B. Sumner at Cornell casts further doubt on this
assumption, even in the case of spherical droplets.
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APPENDIX - SYMBOLS

Coefficients of spherical harmoniecs (eq. 9)
Dimensionless coefficients (eq. 11)

Bond number (eq. 11)

Drag coefficient

Coefficients (eq. 10)

Dimensionless coefficients (eq. 11)

Drag force on drop

Acceleration due to gravity

Bernoulli constant (eg. 6)

Constant related to vorticity (eq. 9)

Legendre polynomials: P, Zu; PZE%(3u2—1); P3=5(5u2—3u); o
Pressure

Spherical polar coordinate of surface

Radius of curvature at rear stagnation point (eq. 18)
Equivalent spherical drop radius (eq. 19)

Velocity of free stream

Radial velocity (Fig. 1)

Vélocity in 8 -~ direction (Fig. 1)

Weber number {(eq. 11)

Angle measured from rear stagnation point (Fig. 1)
Dimensionless vorticity (eq. 11)

cos 6

Viscosity of fluid inside drop

Viscosity of fluid outside drop

11



o) Density
g Coefficient of surface tension
¥ Stream function (eq. 2)

Primes: denote differentiation with respect to 6,and also redefinitions
of W and B.

Subscripts:
i Inside drop
o Outside drop
n Order of spherical harmonics
1 At rear stagnation point (6=0)
2 At shoulder (6=u/2)
3 At front stagnation point (8=m)
Subscript occasionally denotes partial differentiation.
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TABLE

Water drops in water (o—- =1; = 1)
o) [o]
R R R
-f ﬁf iri— B! W' CD K ay a, a3 ¢y ¢, c3
1.233 1.000 1.159 0.000 0.527 0.000 =-2.72% -0.375 -0.000 -0.165 -0.875 =0.000 0.062
1.284 1,300 1.246 0.0h0 N.,340 0.621 -2.671 -0.418 0.032 -0.169 -1.022 0.09% 0.04k0
1.k06 1.600 1.392 0.064 0.376 0.907 =-2.228 -0.421 0.053 -0.1k2 -1.400 0.328 -0.01k
1.591 1.900 1.58T7 0.132 0.589 1.199 =-1.576 -0.3T4 0.059 -0.099 -2.078 0.Th2 -0.108
1.780 2.150 1.7T+ 0.243 0.842 1.536 -0.987 -0.286 0.051 -0.060 -2.925 1.256 -0.22k
. H.
Chlorobenzene in water (p—: = 1.107; i = 0.799)
R R R
ﬁ]zj ITi- ﬁ B! W' CD K 8, a, a.3 c, ¢, c3
1.219 1.000 1.150 0.000 0.539 0.000 -2.975 -0.403 -0.000 -0.181 -0.847 -0.000 0.058
1.289 1.350 1.260 0.039 0.350 0.592 -2.830 -0.450 0.039 -0.180 -1.046 0.125 0.028
1.426  1.650 1.418 0.068 0.438 0.825 -2.285 -0.k44 0.058 -0.146 -1.47h 0.387 -0.031
1.587 1.900 1.584 0.129 0.641 1.075 -1.687 -0.399 0.063 -0.106 =-2.065 O0.TW6 -0.112
1.778 2.150 1.772 0.240 0.884 1.450 -1.055 =-0.305 0.054 -0.06L -2.916 1.260 -0.227
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Nitrobenzene in water (— = 1.199;

=

—= = 2,030)
(o] [o]

R R R

2 3 e
—_— — — B! W' C K a a a c c c
Ry R Ry D 1 po 3 1 2 3
1.280 1,000 1.192 0.000 0.581 0,000 -1.889 -0.2T4 -0.000 -0.112 -0.976 0.000 0.079
1.321 1.300 1.271 0.052 0.37T4 0.738 -1.918 -0.313 0.024 -0.120 -1.103 0.086 0.057
1.408 1.550 1.383 0.071 0.370 1.027 -1.70% -0.320 0.038 -0.108 -1.385 0.265 0.015
1.573 1.850 1.563 0.128 0.52k 1,306 -1.262 -0.292 0.045 -0.079 -1.991 0.64k -0.07h
1.750 2.100 1.7 0.225 0.757 1.582 -0.831 -0.233 0.041 -0.051 =2.768 1.127 -0.185

P My '
m-Nitrotoluene and water (— = 1.164; — = 2,330)
pO uo

R R R

2 3 e
- - - B! w! C K a 8 a c c c
Rl Rl R1 D 1 2 3 1 2 3
1.289 1.000 1.199 0.000 0.585 0.000 -1.732 -0.254 =-0.000 -0.102 -0.996 0.000 0.083
1.341 1.350 1.295 0.058 0.363 0.849 -1.747 -0.295 0.025 -0.109 -1.161 0.112° 0.05h4
1.437 1.600 1.413 0.080 0.379 1.127 =1.522 -0.297 0.037 -0.096 -1.478 0.313 0.007
1.577 1.850 1.565 0.131 0.513 1.360 -1.174 -0.273 0.042 -0.07T3 =-2.002 0.642 -0.070
1.75L 2.100 1.742 0.226 0.7k 1.623 -0.774 -0.218 0.038 -0.047 -2.776 1.124 -0.183
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Fig. 2. Drag vs. Weber number for Water,
m - Nitrotoluene (m-N), Nitrobenzene '(NB),and
chlorobenzene (GB) drops in water; solid lines
are present calculations, dashed lines are
experimental results of Ref. |.
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